
Muhammad Mugees Asif et al. / Int.Artif.Intell.&Mach.Learn. 2(2) (2022) 21-34 Page 21 of 34

Volume 2, Issue 2, July 2022
Received : 12 March 2022
Accepted : 22 June 2022
Published : 05 July 2022
doi: 10.51483/IJAIML.2.2.2022.21-34

Article Info

Abstract
A huge number of applications available for Android-based smartphone devices
have emerged over the past years. Due to which a huge number of malicious
applications has been growing explosively. Many approaches have been proposed
to ensure the security and quality of application in the markets. Usually, Machine
Learning approaches are utilized in the classification process of malicious
application detection. Calculating accurate results of characterizing applications
behaviors, or other features, has a direct effect on the results with Machine
Learning calculations. Android applications emerge so quickly. The behavior of
current applications has gotten progressively malicious. The extraction of
malware-infected features from applications is thus become a difficult task.
According to our knowledge, a ton of features have been extricated in existing
work however no survey has overviewed the features built for identifying
malicious applications efficiently. In this paper, we will in general give an
extensive review of such sort of work that identifies feature applications by
describing various practices of uses with various kinds of features. In this survey
we have discussed the following dimensions: extraction and selection of feature
methods if any, methods of detection and evaluation performed. In light of our
review, we notice the issues of investigating malware-affected features from
applications, give the scientific categorization and demonstrate the future
headings.

Keywords: Android security, Machine learning, Malware analysis, Malicious application
detection, Survey

2789-2557/© 2022 Muhammad Mugees Asif et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

Malicious Applications Detection in Android Using Machine
Learning
Muhammad Mugees Asif1*, Sana Asif2, Iqra Mubarik3 and Rabia Hussain4

1Department of Computer Science, Garrison University, Lahore 94777, Pakistan. E-mail: mugee-sasifm@gmail.com
2Management Department, Air University, Islamabad 44230, Pakistan. E-mail: mesanaasif@gmail.com
3Department of Computer Science, Garrison University, Lahore 94777, Pakistan. E-mail: iqramubarik914@gmail.com
4Department of Computer Science, Garrison University, Lahore 94777, Pakistan. E-mail: rabiahussain993@gmail.com

Muhammad Mugees Asif et al. / Int.Artif.Intell.&Mach.Learn. 2(2) (2022) 21-34
https://doi.org/10.51483/IJAIML.2.2.2022.21-34 ISSN: 2789-2557

© 2022 Muhammad Mugees Asif et al. This is an open access article under the CC BY
license (https: //creativecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

International Journal of Artificial
Intelligence and Machine Learning

Publisher's Home Page: https://www.svedbergopen.com/

Research Paper Open Access

SvedbergOpen
DISSEMINATION OF KNOWLEDGE

1. Introduction
Android has become one of the most famous operating systems for smartphones in the past few years. According
to the report created by International Data Corporation (IDC) in the year 2017, Android occupies 85% of the
worldwide market share. Due to this popularity, many information-stealing cases are also increasing as this
popularity attracts hackers to steal information from regular users. Till now, no application can forestall

* Corresponding author: Muhammad Mugees Asif, Department of Computer Science, Garrison University, Lahore 94777, Pakistan.
E-mail: mugeesasifm@gmail.com

mailto:mugee-sasifm@gmail.com
mailto:mesanaasif@gmail.com
mailto:iqramubarik914@gmail.com
mailto:rabiahussain993@gmail.com
https://doi.org/10.51483/IJAIML.2.2.2022.21-34
https://www.svedbergopen.com/
mailto:mugeesasifm@gmail.com

Muhammad Mugees Asif et al. / Int.Artif.Intell.&Mach.Learn. 2(2) (2022) 21-34 Page 22 of 34

malicious applications effectively. Some applications developed to detect Malware but these types of
applications are not having the option to distinguish updated Malware application or other apps which are
infected by different types of viruses like Trojans, Spyware (Wei et al., 2019). So, preventing the Android
platform from malicious applications is still a challenging task. While platforms other than Android like IOS
allow users to install the application from their official store like iTunes, but Android framework permit
clients to download applications into their mobile phones from outsider sources like Torrents or direct
downloads which is a major tread for Android security. These reasons provide easy access for attackers to
distribute their malicious applications. Whenever anti-hackers came up with new analyses to protect the
platforms, the hackers start developing new encrypted techniques to bypass that. That is the reason due to
which we need a new technique here and we are trying to implement Machine Learning Techniques in our
system to protect the Android platform from malicious software. These days, we can say that Machine Learning
is the future because if you look around, you can see that there is a lot of data everywhere from text, calls to
emails, and so on. It is very important to manage all of this data efficiently. If you consider humans to perform
this task, there is a limitation for the amount of data that humans can manage otherwise this is nearly
impossible for a human being. So the only way left is to approach the Machine Learning techniques (Aafer and
Yin, 2013).

Machine Learning is the ability of a machine to learn without too much programming. This is something
like if you tell a machine to perform a task two times, the machine will perform that task a third time automatically
and it will increase its efficiency according to the number of times this process repeats. That is our aim and
here we will be developing a mobile application based on Machine Learning techniques to detect applications
that are encoded by Malware and other types of viruses to prevent the Android operating system from being
infected (Wermke et al., 2018).

Figure 1 will showcase our taxonomy of features developed for malicious application detection in android.
First, we depict the investigation techniques for recognizing vindictive applications in android, at that point,
we portray the most utilized features. From that point forward, we will play out an examination among the
connected work.

Figure 1 : Taxonomy of Android Malicious Application Detection

We elaborate on the basic issues of extracting the categories of features. Due to complicating behaviors and
expanding measure of an Android Bundle (APK), extracting of features become time-consuming, coming
about within the non-effective location. For illustration with a static examination, it takes fifteen minutes to
eliminate work call outlines for an apk with 15 MB. Regularly it isn’t commendable for ongoing discovery for

Muhammad Mugees Asif et al. / Int.Artif.Intell.&Mach.Learn. 2(2) (2022) 21-34 Page 23 of 34

end clients. The measure of features that can be separated from an application can be up to 1,000,000.
Nevertheless, various features are zero (Faruki et al., 2013). Instructions to beneficially deal with the insufficient
vectors are basic issue.

2. Background
Before presenting our research, we to begin with a detailed presentation on the Android stage and security
instruments. The essential information will assist you in overcoming the problems and hazards associated
with the Android stage. It’s imperative data for unused issues featured by Android application security
investigation strategies and advances.

2.1. Android Operating System
Based on Linux bit Android is an open-source portable working framework that is outlined essentially for
savvy gadgets. The Linux component layer, library layer, application system layer, and application layer
make up the Android operating system. Linux part layer gives a few fundamental capacities such as memory
administration, handle administration, and arrange conventions. This layer comprises the middle drivers for
all of the hardware pieces’ critical gadgets. To assist the application framework layer, the Library layer provides
a middle library that fuses the underlying library and outsider library for apps in a mastermind. The application
framework layer is similar to a central layer that academic people encourage the sections to use, and it refreshes
the overall structure’s adaptability (Wei et al., 2019). The application system includes various framework
administrations, such as Action Director, Window Chief, Asset Supervisor, Area Supervisor, Substance Supplier,
and so on, to complete this function. The application layer, the so to speak layer that can be associated with
customers, contains all applications operating on Android gadgets. There are numerous techniques for IoT
security accessible with secure shows (Xu et al., 2019; Sadeghi t al., 2017). In this paper, we particularly discuss
application security in the Android system.

2.2. Android Applications
Application for Android is created in Kotlin and Java programming language using Android Software
Development Kit (SDK). Other than the Java code, an app may moreover contain a few nearby libraries that are
given by the Android framework or executed by engineers. An application’s assembled code enclosed by
information and assets is full into a report record, which is called Android Application Bundle (APK). An
Android application operates by using a runtime environment. An application contains four essential parts:
Action, Broadcast Collectors, Benefit, and Substance Supplier. Action directs the Client Interface and controls
the customer communication with the savvy telephone screen. Broadcast Collectors manage correspondence
between the working system and applications (Aafer and Yin, 2013). Advantage administers establishment
planning of an application to perform long-running tasks. Substance Supplier gives the data sharing over
applications.

2.3. Security Mechanisms
Security Professionals present security instruments when they plan the security approaches for the Android
stage. Android framework depends on progressive design, and each layer has its security component. We will
discuss here the two most adopted mechanisms, which are the Permission inspection-based mechanism and
sandbox mechanism (Faruki et al., 2013).

2.3.1. Access Control

The traditional access control system is the same as the Linux piece security component in Android. The subject
is restricted by access control (for example, customers or organizations) to get to the inquiry (for example,
resources). This might be a fundamental way to deal with guarantee the mystery and judgment of data. Get to
control incorporates two sorts of strategies, required to get to control (MAC) and optional get to control (DAC).
The Linux security module executes Macintosh. Record get to control executes DAC (Zhao et al., 2016).

2.3.2. Permission Inspection

Android employments permission-based security demonstrates to confine applications get to a few assets. In
case apps need to utilize limited assets, they have to be applied for consent through XML records. Applications
cannot utilize limited assets until the Android framework endorses Typical, Unsafe, Signature, and Signature/
Framework are the four tiers of Android assents. Low-level consents, which check for common and harmful

Muhammad Mugees Asif et al. / Int.Artif.Intell.&Mach.Learn. 2(2) (2022) 21-34 Page 24 of 34

levels, are granted quickly after an applicant submits an application. Mark level and mark/framework level
approvals are known as cutting-edge consents. An application can apply for these approvals at any time, but
it must first attain stage level affirmation. Be that as it may, there are numerous inadequacies in this instrument.
Clients have to be chosen on the off chance that the authorizations that an applicant applies ought to be
authorized, however, clients don’t have sufficient information to judge it (Yang et al., 2014).

2.3.3. Sandbox

In the Android structure, Sandbox is used to apportion running applications. A sandbox gives an immovably
controlled arrangement of resources for applications to run in. Each application runs in Dalvik Virtual Machine
(VM) and has had to handle resources and space amid the run-season of the Android applications.
Consequently, multiple applications can’t relate to one another and can’t get to every other’s resource and
memory space (Yang et al., 2017).

3. Methodology
We conduct our SLR after planning the study. The following sections portray the comprehensive information
of our SLR procedure.

3.1. Queries of Research
Depicting significant learning with ML approaches is also an issue since we found that the latest work was
done in 2019. A few assessments have driven AI strategies in the Android Platform.

3.2. Search Procedure
Our SLR primarily focuses on seeking logical databases instead of books and other reports. This study chose
two databases to perform the SLR search process:

• https://scholar.google.com

• https://ieeexplore.ieee.org

The accompanying watchwords were utilized to discover related examinations to achieve this SLR research:
“Malicious Application Detection using Machine Learning” OR “Malicious Application Detection in Android
using Machine Learning” OR “Malicious Application Detection in Android using ML” OR “Malicious
Application Detection in Android using DL”

3.3. Search Procedure
Figure 2 demonstrates the hierarchy of our research methodology.

Figure 2: Hierarchy of Research Methodology

https://scholar.google.com
https://ieeexplore.ieee.org

Muhammad Mugees Asif et al. / Int.Artif.Intell.&Mach.Learn. 2(2) (2022) 21-34 Page 25 of 34

3.4. Papers Citations
Table 1 shows the number of citations of chosen research papers, which are taken from IEEE Explore and
Google Scholar. The table shows that the majority of the papers are very much referred to, that true papers are
investigated for this similar writing survey.

Table 1: Reference Papers with Citations and Database

Sr# Citations Database

1. 3 4 Google Scholar

2. 644 Google Scholar

3. 4 6 Google Scholar

4. 128 Google Scholar

5. 4 5 Google Scholar

6. 4 5 IEEE Xplore

7. 1 6 IEEE Xplore

8. 214 Google Scholar

9. 4 Google Scholar

10. 130 Google Scholar

11. 644 Google Scholar

12. 290 Google Scholar

13. 1 0 Google Scholar

14. 6 9 IEEE Xplore

15. 1 IEEE Xplore

16. 6 1 IEEE Xplore

17. 6 2 Google Scholar

18. 1 3 IEEE Xplore

19. 2 Google Scholar

20. 8 4 IEEE Xplore

21. 4 8 Google Scholar

22. 214 Google Scholar

23. 5 5 IEEE Xplore

24. 2 IEEE Xplore

25. 9 4 Google Scholar

26. 3 Google Scholar

27. 101 Google Scholar

28. 9 Google Scholar

29. 4 Google Scholar

30. 784 Google Scholar

31. 3 1 Google Scholar

32. 1 5 Google Scholar

33. 2 1 IEEE Xplore

34. 6 Google Scholar

35. 1 2 IEEE Xplore

36. 3 Google Scholar

37. 138 Google Scholar

Muhammad Mugees Asif et al. / Int.Artif.Intell.&Mach.Learn. 2(2) (2022) 21-34 Page 26 of 34

Table 1 (Cont.)

Sr# Citations Database

38. 4 0 Google Scholar

39. 2 9 Google Scholar

40. 6 3 IEEE Xplore

41. 2 6 Google Scholar

42. 230 Google Scholar

43. 153 Google Scholar

44. 0 Google Scholar

45. 4 4 IEEE Xplore

46. 5 5 Google Scholar

47. 5 Google Scholar

48. 136 Google Scholar

49. 6 4 Google Scholar

50. 2 6 Google Scholar

51. 1 5 Google Scholar

52. 5 Google Scholar

Figure 3 shows the quantities of assessments by year of dispersion. It shows that the year 2014 has more
inclination than different years. According to Figure 3, the amount of production was reduced in the year 2020
of studies utilizing Machine Learning approaches.

Figure 3: Research Papers According to Years

4. Related Work
The process of detecting Malicious Applications in Android is shown in Figure 4 below. The quality of the
features chosen affects the discovery’s performance. Selected features can further be classified into the following
categories:

• Static Features

Muhammad Mugees Asif et al. / Int.Artif.Intell.&Mach.Learn. 2(2) (2022) 21-34 Page 27 of 34

• Dynamic Features

• Features based on Meta-data

4.1. Static Features
These features can be fetched without executing the applications by investigating the code. These features
incorporate such sort of features, which are accessible in apk records, for example, AndroidManifest.xml and
Java code document. The accuracy achieved for permission-based detection is around 90% (Faruki et al., 2013;
Aafer etal., 2013; Ahao et al., 2016; Yang et al., 2014), which is additionally improved with extra features
(Wermke et al., 2019; Yang et al., 2017; Suarez-Tangil et al., 2017). In the next section, we will discuss the most
used static features in detail.

4.2. Permission
A permission-based security model is used by Android to restrict an application from accessing user’s
sensitive information to ensure client data security. Applications request permission from the users before
their installation. After clients acknowledge these authorizations, the application installs itself on the mobile
phone.

So many ways exist for Android malware application detection by extracting permission. Wang et al.
(2019) performs an investigation on the dangers of individual permissions and cooperative authorizations.
They positioned the authorizations regarding their dangers. Sarma (Aafer et al., 2013) utilized both the
permissions that an application mentioned and authorizations mentioned by different applications in a
similar classification. The reason for this technique was to check whether the applications exceeded their
normal dangers. Some studies (Wermke et al., 2019; Faruki et al., 2013; Zhao et al., 2016; Yang et al., 2014; 2017;
Suarez-Tangil et al., 2017; Aafer et al., 2013; Chen et al., 2014; Nath and Mehtre, 2014; Avdiienko et al., 2015; da
Costa et al., 2016; Saracino et al., 2018; Vidas et al., 2014; Feldman et al., 2015; Wu et al., 2016; Lindorfer et al.,
2015; Chen et al., 2017; Yang et al., 2014; Cen et al., 2015; Zhu et al., 2016; Idrees et al., 2017; Dam and Touili,
2017; Chen et al., 2016; Leeds et al., 2017; Lin et al., 2017) brought permissions just as some different features
and used ML ways to deal with recognize malicious applications. This methodology-accomplished precision
as over 94% (Wei et al., 2019), Because applying permission security is critical for attackers to achieve their
hacking goals, permission is the most commonly used static feature in Android. For example, if an application
has a calling feature, the Android framework will check if the application has granted the necessary permission
to access the calling feature. Based on this circumstance, permissions are given more weight in existing
malicious program detection research than other static attributes.

Figure 4: Architecture of Malicious Application Detection

Muhammad Mugees Asif et al. / Int.Artif.Intell.&Mach.Learn. 2(2) (2022) 21-34 Page 28 of 34

4.3. App Component
These are essential structure squares of an Android application. These components are the section that focuses
on the framework to access the application as they are linked with the AndroidManifest.xml, which describes
how these components interact. The four major components of an Android application are Activity, Service,
Broadcast Receiver, and Content Provider (Wei et al., 2019).

Some work (Chen et al., 2014; Nath and Mehtre, 2014; Avdiienko et al., 2015; da Costa et al., 2016; Saracino
et al., 2018; Vidas et al., 2014) considered action as features in Malicious application recognition. (Chen et al.,
2014) removed the number of exercises and different features to identify malignant applications. Studies (Nath
and Mehtre, 2014; da Costa et al., 2016; Vidas et al., 2014) further applied assistance and broadcast beneficiaries
as features in malicious application discovery. Feldman et al. (2015) picked the recurrence of highly need
recipients and manhandled administrations to recognize malicious applications. The FPR and FNR were
both around 10%, but the outcome of perfection was up to 90% (Wei et al., 2019). While Mohsen (Wu et al., 2016)
examined the code and researched examples of Broadcast collector parts of malicious applications. The tests
demonstrated that utilizing the Broadcast recipients with permissions expanded malicious applications’
forecast precision to 97%.

4.4 Filtered Intent
The intent message is used to handle the correspondence between parts of the equivalent or assorted
applications by sending point objects. In arrange to prompt the Android system, every one of them has at least
one expectation channel. Expectation channels offer assistance app components that dismiss the undesirable
entomb and take off the specified intents. They are portrayed within the show records and used in malicious
application locations. Lindorfer et al. (2015) extracted the intent which gets a response by application via the
transmission gatherer. (Chuang and Wang, 2015) gathered dormant features including filtered intents by
Android foundation record. They utilized SVM for location reasons and the exploratory comes about appeared
that DREBIN recognized 94% of malicious applications with less false caution. (Chen etal., 2017) used a blend
of intents and permissions for perceiving Android malicious applications. They advanced the process to
fruition with gathering techniques additionally, coming to fruition in 99.8% precision.

4.5. API
Application Programming Interface calls represent how an application collaborates with the Android structure.
Each application requires APIs to connect with the device. Consequently, some work utilizes APIs as features
for malicious application detection. It is crucial to catch the API calls and the conditions among these calls.
This data can be obtained via static examination and dynamic investigation.

Various methodologies are available for Android malicious application detection by investigating
applications API. A few examinations (Wermke et al., 2018; Chen et al., 2014; Avdiienko et al., 2015; Dam and
Touili, 2017; Grace et al., 2012; Songet al., 2016; Martín et al., 2016; Chuang and Wang, 2015; Liu et al., 2015; Li
and Li, 2015; Dam and Touili, 2017; Wang et al., 2018; Ham et al., 2014; Bhandari et al., 2015; Yuan et al., 2016;
Ozdemir and Sogukpinar, 2014; Petsas et al., 2014 Suarez-Tangil et al., 2017; Feldman, et al., 2015) fetched APIs
just as some different features and used AI to distinguish malicious applications. Studies (Wermke et al., 2018;
Zhu et al., 2016; Chuang and Wang, 2015; Ham et al., 2014) are all thought to be confined API’s and dubious
APIs as features to recognize malicious applications. Rather than using APIs straightforwardly, (Lindorfer et
al., 2020) further recognized the API calls having a place with a similar technique in the small code into a
square, to be specific API call block. Their exploratory outcomes demonstrated that the API call block outer
framed utilizing API calls straightforwardly in Android malicious application recognition.

4.6. File Property
Document properties refer to features available in applications imperative documents, for example, the ‘.so’
and ‘.zip’ records, the little documents, the suspicious records, etc. Android applications are passed on as .apk
compacted records. Archived documents can lessen the number of download records when introducing an
app. Be that as it may, since the compressed records don’t contain confinements of information sort, in some
cases, are utilized to bring pernicious payloads as .so files and .zip records. Due to this, a few works use
nearness or nonappearance of .zip records and .so records as features. (Faruki et al., 2013) has chosen the
nearness of ‘.so’ or ‘.zip’ records as features for Android malicious application discovery for illustration.

Muhammad Mugees Asif et al. / Int.Artif.Intell.&Mach.Learn. 2(2) (2022) 21-34 Page 29 of 34

Whereas (Faruki et al., 2013) recognized malicious applications based on the nearness and nonattendance of
zip records interior the most application chronicle. They prepared up to 15,000 applications from Google Play
out of which 732 known malicious applications (Wei et al., 2019). The tests confirmed that their strategy can
discover 95% of malicious applications and taken a toll on 13% of the non-malicious applications on normal
over different platforms.

Table 2 shows the list of machine learning models used in different research papers according to analysis
and feature based techniques.

5. Detecting Android Application Methods
Current investigation techniques of distinguishing Android applications principally comprise of static,
dynamic, half and half, and meta-information examination. We present these examination strategies
momentarily and order the studied papers as per the scientific categorizations of utilized features.

5.1. Static Analysis
The android stage turns into the objective of malware engineers and endures genuine kinds of malicious
application threats due to its popularity. In return, Security professionals aim to detect malicious applications
via static analysis. Static analysis is well known for this purpose and its mechanisms for market protection. In
static analysis, applications are decompiled into types of les that define necessary information about those
applications. These types of les with required information are then put into computation to confirm that if
there are malicious codes available or not. Static Analysis takes fewer assets and time and that is why it is
exceptionally well known.

5.2. Dynamic Analysis
Dynamic Analysis distinguishes malicious practices after sending the applications on emulators or genuine
gadgets. It creates depictions of network action, processor execution, framework calls, SMS sent, calls, and so
on to separate malignant applications from typical ones (Wei et al., 2019). Information fetched through Dynamic
Analysis represents the Application’s actual behavior. Dynamic Analysis process consumes an excessive
amount of time and it may not be able to detect such kind of malicious applications which stops themselves
from running on testing environments.

5.3. Hybrid Analysis
It is the combination of static, dynamic, and also meta-data analysis in the detection system. Therefore, Hybrid
Analysis contains advantages and disadvantages of static analysis and dynamic analysis. This is the most

Table 2: Models Used in Different Papers

Work Year Analysis Features ML Techniques

2017 Static Permissions, Intent Feature Importance (FI), Ensemble
Learning (EL)

2018 Dynamic Network Usage Base Models

2018 Static API Calls Base Models

2019 Dynamic Permissions, Intent, API Calls Base Models

2020 Static Permissions, Intent Base Models, EL

2020 Hybrid Base Models, F1

2020 Static Permissions, Intent, API Calls Base Models, FI

2020 Static Permissions, OpCodes, API Calls Base Models

2021 Static Base Models with weighted mapping, FI

2021 Static Permissions, Intents Base Models, EL, DR

Idrees
et al.

Kouliaridis

Tao et al.

Wang et al.

Millar et al.

Alzaylaee
et al.

Taheri et al.

Cai et al.

Kouliaridis
et al.

Potha et al.
Permissions, Intent, API Calls,
Action/Events

Components, API Calls, Intents,
Shell commands

Muhammad Mugees Asif et al. / Int.Artif.Intell.&Mach.Learn. 2(2) (2022) 21-34 Page 30 of 34

complete investigation since it dissects both establishment records and application practices at runtime.
Therefore it consumes an excessive amount of time and Android operating system resources.

5.4. Meta-Data Analysis
Meta-Data Analysis can not be delegated static examination nor dynamic investigation since it has nothing to
do with the application itself. This is a sort of indirect application analysis to identify malicious behavior in a
malware-infected application.

6. Results and Discussion
We discovered 5,683,694 mobile malicious installation packages in 2020, which was 2,100,000 more than in
2019 as shown in Figure 5.

Figure 5: Number of Installed Malicious Application Packages

Table 3 shows that Iran (67.78%) was the country with the most consumers who had been attacked, owing
to AdWare’s relentless spread. Android is a mobile operating system. The Notifiers are a family of applications.
RiskTool is an alternative Telegram client that we have detected. Another common threat was

Table 3: Number of Users Infected According to Country

 Country Percentage of Users Attacked

Iran 67.78

Algeria 31.29

Bangladesh 26.18

Morocco 22.67

Nigeria 22.00

Saudi Arabia 21.75

India 20.69

Malaysia 19.68

Kenya 18.52

Indonesia 17.88

Muhammad Mugees Asif et al. / Int.Artif.Intell.&Mach.Learn. 2(2) (2022) 21-34 Page 31 of 34

AndroidOS.FakGram.d. Although this isn’t malware, communications transmitted through the program may
end up in the hands of undesired individuals. Trojan.AndroidOS.Hiddapp.bn was an often-found malicious
malware whose goal was to deliver adware to an infected device.

Algeria came in second with 31.29% of the vote. In that country, the AdWare.AndroidOS.FakeAdBlocker
and AdWare.AndroidOS.HiddenAd families were the most common. Trojan-Dropper was one of the most
often used harmful malware. AndroidOS.Agent.ok and Trojan.AndroidOS.Agent.sr are two AndroidOS.
Agent.ok variants. Bangladesh rounded out the “top three” with 26.18%, with the FakeAdBlocker and HiddenAd
adware families being the most common.

Finally, the Figure 6 represents the most widely used base categorization models among the publications
surveyed. The random forest appears to be the most common classifier, followed by SVM and Naive Bayes.

Figure 6: Machine Learning Classifiers Used According to Year

7. Conclusion and Future Work
In this paper, we have performed our analysis to capture and analyze the behavior of system call traces made
by each application during their run time. We conclude that using dynamic analysis for malware detection
using the system call analysis can be efficiently employed to classify the applications as malicious. Currently,
static analysis is being used to detect and monitor the behavior of malicious applications that employ complex
obfuscation techniques.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Conflicts of Interest
The authors declare no conflict of interest.

References
Aafer, Y., Du, W. and Yin, H. (2013). DroidAPIMiner: Mining API-level Features for Robust Malware Detection

in Android, in Proc. Int. Conf. Security. Privacy Commun. Syst., 86–103, Sydney, NSW, Springer,
Australia.

Aafer, Y., Du, W. and Yin, H. (2013). DroidAPIMiner: Mining API-Level Features For Robust Malware Detection
in Android, in Proc. Int. Conf. Security. Privacy Commun. Syst., 86–103, Sydney, NSW, Springer,
Australia.

Muhammad Mugees Asif et al. / Int.Artif.Intell.&Mach.Learn. 2(2) (2022) 21-34 Page 32 of 34

Alzaylaee, M.K., Yerima, S.Y. and Sezer, S. (2020). DL-Droid: Deep Learning Based Android Malware Detection
Using Real Devices. Comput. Secur., 89, 101663.

Avdiienko, V., Kuznetsov, K., Gorla, A., Zeller, A., Arzt, S., Rasthofer, S. and Bodden, E. (2015). Mining Apps
For Abnormal Usage Of Sensitive Data. in Proc. IEEE/ACM IEEE Int. Conf. Softw. Eng., May,
426–436.

Bhandari, S., Gupta, R., Laxmi, V., Gaur, M. S., Zemmari, A. and Anikeev, M. (2015). DRACO: DRoid Analyst
Combo an Android Malware Analysis Framework,’’ in Proc. Int. Conf. Security. Inf. Netw., 283–289.

Cai, L., Li, Y. and Xiong, Z. (2021). JOWMDroid: Android Malware Detection Based On Feature Weighting
With Joint Optimization Of Weight-mapping And Classifier Parameters. Comput. Secur., 100,
102086.

Cen, L., Gates, C.S., Si, L. and Li, N. (2015). A Probabilistic Discriminative Model For Android Malware
Detection With Decompiled Source Code. IEEE Trans. Dependable Secure Comput., 12(4), 400–412.

Chen, K., Liu, P. and Zhang, Y. (2014). Achieving Accuracy And Scalability Simultaneously in Detecting
Application Clones on Android Markets. in Proc. Int. Conf. Softw. Eng., 175–186.

Chen, L., Hou, S. and Ye, Y. (2017). SecureDroid: Enhancing Security Of Machine Learning-based Detection
Against Adversarial Android Malware Attacks. in Proc. 33rd Annu. Comput. Security. Appl. Conf.,
Orlando, FL, USA, December, 362–372. [Online]. Available: http:// doi.acm.org/10.1145/
3134600.3134636.

Chen, S., Tang, Z., Tang, Z., Xu, L. and Zhu, H. (2016). StormDroid: A streaming-glized Machine Learning-
based System For Detecting Android Malware. in Proc. ACM Asia Conf. Comput. Commun. Security.,
377–388.

Chuang, H.-Y. and Wang, S.-D. (2015). Machine Learning-based Hybrid Behavior Models For Android
Malware Analysis. in Proc. IEEE Int. Conf. Softw. Qual., Rel. Security., August, 201–206.

da Costa, K.A.P., da Silva, L.A., Martins, G.B., Rosa, G.H., Pereira, C.R. and Papa, J.P. (2016). Malware Detection
In Android-based Mobile Environments Using Optimum-path Forest. in Proc. IEEE Int. Conf. Mach.
Learn. Appl., December, 754–759.

Dam, K.-H.-T. and Touili, T. (2017). Learning Android Malware. in Proc. Int. Conf. Available., Rel.
Security., 59.

Faruki, P., Ganmoor, V., Laxmi, V., Gaur, M.S. and Bharmal, A. (2013). AndroSimilar: Robust statistical
feature signature for Android malware detection. in Proc. Int. Conf. Security. Inf. Netw., 152–159.

Feldman, S., Stadther, D. and Wang, B. (2015). Manilyzer: Automated Android Malware Detection Through
Manifest Analysis. in Proc. IEEE Int. Conf. Mobile Ad Hoc Sensor Syst., October, 767–772.

Grace, M., Zhou, Y., Zhang, Q., Zou, S. and Jiang, X. (2012). RiskRanker: Scalable and Accurate Zero-day
Android Malware Detection. in Proc. Int. Conf. Mobile Syst., Appl., Services, 281–294.

Ham, Y. J., Moon, D., Lee, H.-W., Lim, J. D. and Kim, J. N. (2014). Android Mobile Application System Call
Event Pattern Analysis For Determination of Malicious Attack. Int. J. Secure. Appl., 8(1), 231–246.

Idrees, F., Rajarajan, M., Conti, M., Chen, T.M. and Rahulamathavan, Y. (2017). Android: A Novel Android
Malware Detection System Using Ensemble Learning Methods. Comput. Security., 68, 36-46.

Kouliaridis, V., Barmpatsalou, K., Kambourakis, G. and Wang, G. (2018). Mal-Warehouse: A Data Collection-
as-a-Service of Mobile Malware Behavioral Patterns. In Proceedings of the 2018 IEEE SmartWorld,
Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing
Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), October 8-12, 1503–1508, Guangzhou,
China.

Kouliaridis, V., Potha, N. and Kambourakis, G. (2021). Improving Android Malware Detection Through
Dimensionality Reduction Techniques. In Machine Learning for Networking, 57–72, Springer International
Publishing, Paris, France.

Leeds, M., Keffeler, M. and Atkison, T. (2017). A Comparison of Features For Android Malware Detection. in
Proc. ACM Southeast Regional Conf., 63–68.

http://

Muhammad Mugees Asif et al. / Int.Artif.Intell.&Mach.Learn. 2(2) (2022) 21-34 Page 33 of 34

Li, Q. and Li, X. (2015). Android Malware Detection Based On Static Analysis Of Characteristic Tree. in Proc.
Int. Conf. Cyber-Enabled Distrib. Comput. Knowl. Discovery, 84–91.

Lin, J., Zhao, X. and Li, H. (2017). Target: Category-based Android Malware Detection Revisited. in Proc.
ACSW, 74:1–74:9.

Lindorfer, M., Neugschwandtner, M. and Platzer, C. (2015). Marvin: Efficient and Comprehensive Mobile App
Classification Through Static And Dynamic Analysis. in Proc. Comput. Softw. Appl. Conf., July,
422–433.

Liu, Z., Lai, Y. and Chen, Y. (2015). Android Malware Detection Based On Permission Combinations. Int. J.
Simul. Process Model., 10(4), 315–326.

Martín, A., Menéndez, H.D. and Camacho, D. (2016). String-based Malware Detection for Android Environments.
in Proc. Int. Symp. Intell. Distrib. Comput., 99–108, Paris, France: Springer.

Millar, S., McLaughlin, N., del Rincon, J.M., Miller, P. and Zhao, Z. (2020). DANdroid: A Multi-View
Discriminative Adversarial Network for Obfuscated Android Malware Detection; Association for
Computing Machinery: New York, NY, USA.

Nath, H. V. and Mehtre, B.M. (2014). Static Malware Analysis Using Machine Learning Methods in Proc. Int.
Conf. Security. Comput. Netw. Distrib. Syst., 440–450, Springer, Thiruvananthapuram, India.

Ozdemir, M. and Sogukpinar, I. (2014). An Android Malware Detection Architecture Based on Ensemble
Learning. Trans. Mach. Learn. Artif. Intell., 2(3), 90–106.

Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M. and Ioannidis, S. (2014). Rage Against The
Virtual Machine: Hindering Dynamic Analysis Of Android Malware. in Proc. Eur. Workshop Syst.
Security., 5.

Potha, N., Kouliaridis, V. and Kambourakis, G. (2020). An Extrinsic Random-based Ensemble Approach For
Android Malware Detection. Connect. Sci., 1–17.

Sadeghi, A., Bagheri, H., Garcia, J. and Malek, S. (2017). A Taxonomy And Qualitative Comparison Of Program
Analysis Techniques For Security Assessment Of Android Software. IEEE Trans. Softw. Eng., 43(6),
492–530.

Saracino, A., Sgandurra, D., Dini, G. and Martinelli, F. (2018). MADAM: Effective and Efficient Behavior-based
Android Malware Detection And Prevention. IEEE Trans. Depend. Sec. Comput., 15(1), 83–97. DOI:
10.1109/TDSC.2016.2536605.

Song, J., Han, C., Wang, K., Zhao, J., Ranjan, R. and Wang, L. (2016). An Integrated Static Detection And
Analysis Framework for Android. Pervasive Mobile Comput., 32, 15–25.

Suarez-Tangil, G., Dash, S.K., Ahmadi, M., Kinder, J., Giacinto, G. and Cavallaro, L. (2017). DroidSieve: Fast
and Accurate Classification of Obfuscated Android Malware. in Proc. ACM Conf. Data Appl. Security.
Privacy, 309–320.

Taheri, R., Ghahramani, M., Javidan, R., Shojafar, M., Pooranian, Z. and Conti, M. (2020). Similarity-based
Android Malware Detection Using Hamming Distance Of Static Binary Features. Future Gener. Comput.
Syst., 105, 230–247.

Tao, G., Zheng, Z., Guo, Z. and Lyu, M.R. (2018). MalPat: Mining Patterns of Malicious and Benign Android
Apps via Permission-Related APIs. IEEE Trans. Reliab., 67, 355–369.

Vidas, T., Tan, J., Nahata, J., Tan, C.L., Tague, P. and Tague, P. (2014). A5:Automated Analysis of Adversarial
Android Applications. in Proc. ACM Workshop Security. Privacy Smartphones Mobile Devices,
39–50.

Wang, S., Chen, Z., Yan, Q., Yang, B., Peng, L. and Jia, Z. (2019). A Mobile Malware Detection Method Using
Behavior Features In Network Traffic. J. Netw. Comput. Appl., 133, 15–25.

Wang, W., Li, Y., Wang, X., Liu, J. and Zhang, X. (2018). Detecting Android Malicious Apps And Categorizing
Benign Apps With Ensemble of Classifiers. Future Gener. Comput. Syst., 78, 987–994, [Online]. Available:
http://www.sciencedirect.com/science/ article/pii/S0167739X17300742

http://www.sciencedirect.com/science/

Muhammad Mugees Asif et al. / Int.Artif.Intell.&Mach.Learn. 2(2) (2022) 21-34 Page 34 of 34

Wei, Wang., Meichen, Zhao., Gao, Zhenzhen., Xu, Guangquan., Xian, Hequn., Li, Yuanyuan. and Zhang,
Xiangliang. (2019). Constructing Features for Detecting Android Malicious Applications: Issues,
Taxonomy, and Directions. IEEE Access, 1-1. 10.1109/ACCESS.2019.2918139.

Wermke, D. , Huaman, N., Acar, Y., Reaves, B., Traynor, P. and Fahl, S. (2018). A Large Scale Investigation Of
Obfuscation Use In Google Play, in Proc. 34th Annu. Comput. Security. Appl. Conf., 222–235. [Online].

Wu, S., Zhang, Y. and Xiong, X. (2016). Efficient Privacy Leakage Discovery for Android Applications Based
On Static Analysis. Int. J. Hybrid Inf. Technol., 9(3), 199–210.

Xu, G. , Zhang, Y., Sangaiah, A. K., Li, X., Castiglione, A. and Zheng, X. (2019). CSP-E2: An Abuse-free Contract
Signing Protocol With Low-storage TTP For Energy-efficient Electronic Transaction Ecosystems, Inf.
Sci., 476, 505–515, Feb. DOI: 10.1016/j.ins.2018.05.022.

Yang, C., Xu, Z., Gu, G., Yegneswaran, V. and Porras, P.A. (2014). Droid- Miner: Automated Mining And
Characterization Of Fine-grained Malicious Behaviors In Android Applications. in Proc. 19th Eur.
Symp. Res. Com- put. Security. (ESORICS), Wroclaw, Poland, September, 163–182. DOI: 10.1007/978-
3-319-11203-9_10.

Yang, F., Zhuang, Y. and Wang, J. (2017). Android Malware Detection Using Hybrid Analysis And Machine
Learning Technique,’’ in Proc. Int. Conf. Cloud Comput. Security, 565–575, Springer, Nanjing, China.

Yuan, Z., Lu, Y. and Xue, Y. (2016). Droiddetector: Android Malware Characterization And Detection Using
Deep Learning. Tsinghua Sci. Technol., 21(1), 114–123.

Zhao, K., Zhang, D., Su, X. and Li, W. (2016). Fest: A Feature Extraction And Selection Tool For Android
Malware Detection. in Proc. Comput. Commun., 714–720.

Zhu, J., Wu, Z., Guan, Z. and Chen, Z. (2016). API Sequences Based Malware Detection for Android. in Proc.
IEEE Int. Conf. Auton. Trusted Comput. IEEE Int. Conf. Scalable Comput. Commun. It’s Associated
Workshops Ubiquitous Intell. Comput., 673–676.

Cite this article as: Muhammad Mugees Asif, Sana Asif, Iqra Mubarik and Rabia Hussain (2022). Malicious
Applications Detection in Android Using Machine Learning. International Journal of Artificial Intelligence
and Machine Learning, 2(2), 21-34. doi: 10.51483/IJAIML.2.2.2022.21-34.

	Title and Authors
	Abstract
	1. Introduction
	2. Background
	2.1. Android Operating System
	2.2. Android Applications
	2.3. Security Mechanisms
	2.3.1. Access Control
	2.3.2. Permission Inspection
	2.3.3. Sandbox

	3. Methodology
	3.1. Queries of Research
	3.2. Search Procedure
	3.3. Search Procedure
	3.4. Papers Citations

	4. Related Work
	4.1. Static Features
	4.2. Permission
	4.3. App Component
	4.4 Filtered Intent
	4.5. API
	4.6. File Property

	5. Detecting Android Application Methods
	5.1. Static Analysis
	5.2. Dynamic Analysis
	5.3. Hybrid Analysis
	5.4. Meta-Data Analysis

	6. Results and Discussion
	7. Conclusion and Future Work
	Funding
	Data Availability Statement
	Conflicts of Interest
	References
	Cite this article as

